THE MECHANISM OF BOROHYDRIDE REDUCTIONS. REACTIONS OF GAS PHASE BOROHYDRIDE ION WITH CARRONYL GROUPS BY ION CYCLOTRON RESONANCE SPECTROSCOPY. M.M. Kayser^l Département de Chimie Université de Moncton, Moncton, New Brunswick, Canada ElA 3E9

T.B. McMahon*² Dept. of Chemistry, Univ. of New Brunswick, Fredericton, N.B., Canada E3B 6E2

ABSTRACT

The reaction between BH_A^- and CH₂O has been investigated in the gas phase using ion cyclotron resonance spectroscopy. No hydride transfer from BH_{Δ}^- to the carbonyl group is observed, however a novel reaction between enolate ions and diborane has been observed.

Reduction of the carbonyl function by borohydride is an important synthetic reaction. In spite of extensive use, a great number of studies and much polemics, the mechanism of this reaction remains somewhat puzzling.3

Originally, both single-step and two-step mechanisms were considered as possible reaction pathways. Lately, a single-step, four-centre transition state was ruled out since it could not explain certain experimental results, 4 and is moreover forbidden in terms of orbital symmetry.⁵ In the meantime a two-step mechanism enjoyed continuing consideration.⁶ Dewar and McKee's MNDO/3 calculations⁷ for BH₄⁻ addition to formaldehyde supported strongly a two-step process: the first step. involving a hydride transfer from BH_4^- to the carbonyl group, followed by formation of B-O bond (equation 1).

$$
BH_4^{\dagger} + H_2CO \xrightarrow{\text{step 1}} BH_3 + CH_3O^{\dagger} \xrightarrow{\text{step 2}} CH_3O-\bar{B}H_3
$$
 (1)

More recently, ab initio calculations carried out for concerted and stepwise pathways for the reduction of H_2CO by BH_4^- showed that, while

Dewar and McKee's overall mechanism is exothermic, the first step, the complete hydride transfer, is endothermic by 36 kcal mol⁻¹. These latter calculations suggest that the more favourable path is a single-step mechanism with a four center transition state best described as a $BH₂$ group bridging the newly formed C-H bond and the carbonyl oxygen **atom.** This pathway is exothermic with a 30 kcal mol⁻¹ energy barrier. The calculations are however in contrast with the experimental observation that the reductions of aldehydes by BH_{4}^{-} in solution are rapid and exothermic with no apparent energy barrier. Evidently, such behaviour might be due to solvent effects. To investigate this possibility ah initio calculations were performed for the reduction involving solvation of each reactant and product by a single molecule of water. 8 While the calculated activation barrier for this process was lowered it remained a substantial 21 kcal mol^{-1} . Significantly, only when a counter ion was included (equation 2) did the hydride transfer from BH_{4}^{-} to $H_{2}CO$ become exothermic.

$$
Na+•BH4- + H2CO → Na+•CH3O- + BH3
$$
 (2)

In order to better understand the reaction of BH_4^- with H_2 CO and with carbonyl functions in general and to determine whether or not an intrinsic activation barrier exists in the borohydride reductions of carbonyl compounds, **the** present ion cyclotron resonance (ICR) study was undertaken.

Borohydride ion, BH_{4}^{-} , was generated in the ICR apparatus by the reaction of F^- , produced via dissociative electron attachment to NF₃, with diborane, B_2H_6 . This reaction yielded in addition to BH_4^- small quantities of BH_3F^- and $B_2H_5^-$, (equation 3). Subsequent addition of formaldehyde to the system revealed no reaction of any boron containing anions

$$
\rightarrow \text{BH}_{\text{A}}^{\text{+}} + \text{BH}_{\text{B}}\text{F} \tag{3a}
$$

$$
F^- + B_2 H_6 \longrightarrow B H_3 F^- + B H_3 \tag{3b}
$$

$$
B_2H_5 + HF
$$
 (3c)

with H₂CO. In particular no hydride transfer from BH_4^- to H₂CO was observed, (equation 4). Reaction of CD_3O^- with B₂H₆ led rapidly to

$$
BH_4^+ + H_2CO \longrightarrow \longrightarrow \text{BH}_3 + H_3C-C
$$
 (4)

production of BH_{4}^- but no $BH_{3}D^-$ via reaction (5).⁹ A much slower reaction,

eqn (6).

$$
CD_3O^- + B_2H_6 + BH_4^- + CD_3OBH_2
$$
 (5)

to yield $B_2H_6D^+$ was also observed indicating

$$
CD_3O^+ + B_2H_6 + B_2H_6D^+ + CD_2O \qquad (6)
$$

that B_2H_6 , and probably BH_3' , has a greater hydride affinity than CH_2O giving further weight to the suggestion that eqn (4) is endothermic. Attempts to "activate" the carbonyl group by substituting electronegative groups for hydrogen at the carbonyl centre were similarly unsuccessful. For example, in the presence of F_2CO , BH_A^- exhibited no gas phase reactivity, (equation 7). The gas phase data thus support the results of the ab initio calculations⁸ showing the reaction of naked B_{H_A} ⁻ with

$$
BH_4^- + F_2CO \longrightarrow \longrightarrow \text{BH}_3 + F_2CHO^-
$$
 (7)

formaldehyde to be highly endothermic. They suggest that hydride transfer from BH_{4}^{-} to a carbonyl function is intrinsically either endothermic or, if exothermic, then involves a significant activation energy. Thus the problem of one versus two-step mechanism remains unresolved. It appears evident that in solution the borohydride reduction of carbonyl compounds must proceed with solvent and/or counter ion participation.

Despite the failure to distinguish between two possible reaction mechanisms, an extremely interesting gas phase ion-molecule reaction was observed in mixtures of carbonyl compounds and diborane, B_2H_6 . In the presence of carbonyl compounds with α -hydrogen atoms, F^- undergoes exothermic proton abstraction in the gas phase, (equation 8).¹⁰ The resulting enolate ion subsequently reacts with diborane to produce a new boron enolate ion.

$$
F^{-} + R_{1}CH_{2}^{-}C-R_{2} \rightarrow HF + R_{1}^{-}CH_{2}^{-}C-R_{2}
$$
 (8)

(equation 9). These novel boron enolate anions have known analogues in solution synthetic chemistry where

$$
R_{1} - CH - C - R_{2} + B_{2}H_{6} \rightarrow BH_{3} + R_{1}CH = C - R_{2} \qquad (R_{1}CH - C - R_{2})
$$
\n
$$
R_{1} - CH - C - R_{2} + B_{2}H_{6} \rightarrow BH_{3} + R_{1}CH = C - R_{2} \qquad (R_{1}CH - C - R_{2})
$$
\n
$$
-BH_{3}
$$
\n(9)

trialkylboron enolates are used as stereoselective reagents in reactions such as reductions or aldol condensations, 11 although in the gas phase we are unable to determine, as yet, whether BH₃ addition occurs at oxygen or carbon.

Further contributions from this laboratory will provide a more extensive documentation and analysis of this reaction and related reactions of a wide variety of anions with diborane. Acknowledgement

Financial support of this work by N.S.E.R.C. (Canada) (TBM) and N.A.T.O. (M.M.K.) is gratefully acknowledged.

References

- 1. Present address: Department de Chimie; Universite de Quebec d Montreal: C.P. Surccursale A: Montreal, Quebec, Canada H3G 3P0.
- 2. Present address: The Guelph-Waterloo Centre for Graduate Work in Chemistry (Waterloo Campus): Department of Chemistry: University of Waterloo, Waterloo, Ontario, Canada N2L 3Gl.
- 3. D.E. Wigfield, Tetrahedron 35, 449 (1979): M.M. Kayser, S. Eliev and 0. Eisenstein, Tetrahedron Lett., 24, 1015 (1983).
- 4. D.C. Wigfield and F.W. Gowland, Tetrahedron Lett., 38, 3373 (1976); C. Adams, V. Gold and D.M. Reuben, J.C.S. Chem. Commun. 1977, 182.
- 5. R.B. Woodward and R. Hoffmann, "The Conservation of Orbital Symmetry", Academic Press, New York (1971).
- 6. H.O. House, Modern Synthetic Reactions, 2nd ed., Benjamin, Menlo Park, 1972, p.52.
- 7. M.J.S. Dewar and M.L. McKee, J. Am. Chem. Sot., 1978, 100, 7499.
- 8. 0. Eisenstein, H.B. Schlegel and M.M. Kayser, J. Org. Chem. 1982, 47, 2886.
- 9. 0. Eisenstein, M.M. Kayser, M. Roy and T.B. McMahon, Can. J. Chem., submitted.
- 10. J.E. Bartmess and R.T. McIver, Jr., Gas Phase Ion Chem. 2, 88 (1979).
- 11. C.H. Heathcock and C.T. White, J. Am. Chem. Sot., 101, 7076 (1979).

(Received in USA 2 April 1984)